
Alpen-Adria-Universität Klagenfurt
UE Betriebssysteme, 621.752 – 621.754

SS 2025​ ​ ​ Tucek/Horvath

Übungsblatt 10

Ü 10.1​ Geräte (devices) in Linux

Beantworten Sie die folgenden Fragen und Aufgaben:

1)​ Was versteht man unter einer Gerätedatei in Linux?

2)​ Listen Sie alle Gerätedateien in Ihrem Linux System auf.

3)​ Was ist der Unterschied zwischen Character- und Block-Devices?

4)​ Wie viele Character-Devices bzw. wie viele Block-Devices sind auf Ihrem Rechner im
Einsatz?

5)​ Was versteht man unter den Major- und Minor-Nummern von Gerätedateien und
wozu werden diese benutzt?

6)​ Bestimmen Sie die Major- und Minor-Nummern von /dev/random und /dev/null.
Handelt es sich bei den Geräten um Character- oder Block-Devices?

Ü 10.2​ Threads - Barrieren Bingo

Machen Sie sich mit den folgenden Funktionen vertraut: pthread_barrier_init,
pthread_barrier_wait, pthread_testcancel, pthread_cancel

Implementieren Sie ein einfaches, nicht-interaktives Bingo-Spiel mittels Threads (verwenden

Sie stub10_2.c als Basis):

●​ Es gibt N Spielende, die zu Beginn je ein Array mit 10 unterschiedlichen Zufallszahlen

von 1 bis 50 befüllen.

●​ Ein Showmaster zieht maximal einmal pro Sekunde eine Zahl aus diesem

Wertebereich, wobei jede Zahl nur einmal gezogen werden kann.

●​ Die Spielenden überprüfen, ob die gezogene Zahl in ihrem Array enthalten ist. Sollte

dies der Fall sein, wird die Zahl mit 0 überschrieben.

●​ Nachdem alle Spielenden überprüft haben, ob die Zahl vorhanden ist, gibt ein

Monitor-Thread den aktuellen Spielstand auf der Konsole aus: es werden die Zahlen

jedes Spielenden ausgegeben, die noch nicht gezogen wurden. Verwenden Sie für die

Synchronisierung der Spielenden und des Monitor-Threads pthread_barrier_wait.

●​ Wurden alle Zahlen eines Spielenden gezogen, hat dieser gewonnen. Er beendet alle

anderen Threads mit pthread_cancel und beendet sich schließlich selbst.

​ - Seite 1 -

Alpen-Adria-Universität Klagenfurt
UE Betriebssysteme, 621.752 – 621.754

SS 2025​ ​ ​ Tucek/Horvath

●​ Stellen Sie sicher, dass der Showmaster erst dann wieder eine Zahl ziehen kann, wenn

alle SpielerInnen die letzte Zahl überprüft haben und der Monitor-Thread den

aktuellen Spielstand ausgegeben hat.

Ü 10.3​ Stack und Heap Performance

Recherchieren Sie, wann Ihr Programm Speicher am Stack oder am Heap anfordert.

Schreiben Sie ein C-Programm welches zwei Funktionen implementiert:

 StackAllocationTime();

 HeapAllocationTime();

Beide Funktionen sollen die Ausführungszeit in die Konsole loggen. Natürlich liefert eine

einmalige Speicher allokation nicht representative Werte. Somit sollten zumindest 10^6

Allokationen durchgeführt werden.

Mögliche Ausgabe:

Time of 1000000 stack allocations: 0.002520 seconds

Time of 1000000 heap allocations: 0.029184 seconds

Ü 10.4​ Zombies

Recherchieren Sie, was Zombie-Prozesse in Unix-Betriebssystemen sind und wie diese

erzeugt werden. Dokumentieren Sie, wie im struct task_struct Zombie-Prozesse

gekennzeichnet werden und schreiben Sie ein einfaches C-Programm create_zombie.c,

welches einen Zombie-Prozess erzeugt und danach zumindest 5 Minuten lang weiterläuft.

Starten Sie Ihr Programm nach dem Kompilieren mehrfach, beispielsweise mit dem Befehl

./create_zombie & , damit die Eingabe im Terminal nicht blockiert ist. Mit dem Befehl

ps aux | grep 'Z' sollten Sie sehen können, ob Ihre Zombies aktiv sind.

Ü 10.5​ Zombie Monitor Kernel Modul

Schreiben Sie ein Linux-Kernel-Modul mit dem Namen zombie_monitor, das (einmalig in

init_module) Informationen über alle Zombie-Prozesse ins Kernel-Log schreibt. Das

Modul soll folgende Informationen über alle Zombie Prozesse ausgeben:

●​ Prozess ID

​ - Seite 2 -

Alpen-Adria-Universität Klagenfurt
UE Betriebssysteme, 621.752 – 621.754

SS 2025​ ​ ​ Tucek/Horvath

●​ Parent-Prozess ID

●​ Befehl, mit welchem der Prozess gestartet wurde

●​ Exit-Status des Prozesses

●​ User-ID

●​ CPU-Time im Userspace

●​ CPU-Time im Kernelspace

Testen Sie Ihr Modul indem Sie einen Zombie-Prozess erzeugen und anschließend das Modul

zombie_monitor laden.

Tip: Da der Linux-Kernel alle Prozesse in einer doppelt verketteten Liste (Task-List)

verwaltet, auf deren Kopf die Variable struct task_struct init_task zeigt

(definiert in signal.h), sollten Sie die Makros next_task() oder

for_each_process() für die Navigation durch die Task-List verwenden.

Beachten Sie, dass der letzte Eintrag der Task-List wieder auf den ersten Eintrag zeigt.

​ - Seite 3 -

