Alpen-Adria-Universitat Klagenfurt
UE Betriebssysteme, 621.752 — 621.754

SS 2025 Tucek/Horvath

Ubungsblatt 10

U 10.1 Gerite (devices) in Linux

Beantworten Sie die folgenden Fragen und Aufgaben:

1)
2)
3)

4)

5)

6)

Was versteht man unter einer Geratedatei in Linux?
Listen Sie alle Geratedateien in lhrem Linux System auf.
Was ist der Unterschied zwischen Character- und Block-Devices?

Wie viele Character-Devices bzw. wie viele Block-Devices sind auf lhrem Rechner im
Einsatz?

Was versteht man unter den Major- und Minor-Nummern von Geratedateien und
wozu werden diese benutzt?

Bestimmen Sie die Major- und Minor-Nummern von /dev/random und /dev/null.
Handelt es sich bei den Geraten um Character- oder Block-Devices?

U 10.2 Threads - Barrieren Bingo

Machen Sie sich mit den folgenden Funktionen vertraut: pthread barrier init,
pthread barrier wait, pthread testcancel, pthread cancel

Implementieren Sie ein einfaches, nicht-interaktives Bingo-Spiel mittels Threads (verwenden
Sie stubl0 2.c als Basis):

Es gibt N Spielende, die zu Beginn je ein Array mit 10 unterschiedlichen Zufallszahlen
von 1 bis 50 befillen.

Ein Showmaster zieht maximal einmal pro Sekunde eine Zahl aus diesem
Wertebereich, wobei jede Zahl nur einmal gezogen werden kann.

Die Spielenden Uberpriifen, ob die gezogene Zahl in ihrem Array enthalten ist. Sollte
dies der Fall sein, wird die Zahl mit O tiberschrieben.

Nachdem alle Spielenden uUberpriift haben, ob die Zahl vorhanden ist, gibt ein
Monitor-Thread den aktuellen Spielstand auf der Konsole aus: es werden die Zahlen
jedes Spielenden ausgegeben, die noch nicht gezogen wurden. Verwenden Sie fir die
Synchronisierung der Spielenden und des Monitor-Threads pthread barrier wait.
Wurden alle Zahlen eines Spielenden gezogen, hat dieser gewonnen. Er beendet alle
anderen Threads mit pthread cancel und beendet sich schlief3lich selbst.

- Seite 1 -



Alpen-Adria-Universitat Klagenfurt
UE Betriebssysteme, 621.752 — 621.754

SS 2025 Tucek/Horvath

e Stellen Sie sicher, dass der Showmaster erst dann wieder eine Zahl ziehen kann, wenn
alle Spielerinnen die letzte Zahl Uberprift haben und der Monitor-Thread den
aktuellen Spielstand ausgegeben hat.

U 10.3 Stack und Heap Performance

Recherchieren Sie, wann lhr Programm Speicher am Stack oder am Heap anfordert.

Schreiben Sie ein C-Programm welches zwei Funktionen implementiert:
StackAllocationTime () ;

HeapAllocationTime () ;

Beide Funktionen sollen die Ausfliihrungszeit in die Konsole loggen. Natirlich liefert eine
einmalige Speicher allokation nicht representative Werte. Somit sollten zumindest 1076
Allokationen durchgefihrt werden.

Mogliche Ausgabe:
Time of 1000000 stack allocations: 0.002520 seconds

Time of 1000000 heap allocations: 0.029184 seconds

U 10.4 Zombies

Recherchieren Sie, was Zombie-Prozesse in Unix-Betriebssystemen sind und wie diese
erzeugt werden. Dokumentieren Sie, wie im struct task struct Zombie-Prozesse
gekennzeichnet werden und schreiben Sie ein einfaches C-Programm create zombie.c,
welches einen Zombie-Prozess erzeugt und danach zumindest 5 Minuten lang weiterlauft.

Starten Sie |hr Programm nach dem Kompilieren mehrfach, beispielsweise mit dem Befehl
./create zombie & , damit die Eingabe im Terminal nicht blockiert ist. Mit dem Befehl
ps aux | grep 'Z' sollten Sie sehen kdnnen, ob lhre Zombies aktiv sind.

U 10.5 Zombie Monitor Kernel Modul

Schreiben Sie ein Linux-Kernel-Modul mit dem Namen zombie monitor, das (einmaligin
init module) Informationen Uber alle Zombie-Prozesse ins Kernel-Log schreibt. Das
Modul soll folgende Informationen lber alle Zombie Prozesse ausgeben:

e ProzessID

- Seite 2 -



Alpen-Adria-Universitat Klagenfurt
UE Betriebssysteme, 621.752 — 621.754

SS 2025 Tucek/Horvath

e Parent-Prozess ID

e Befehl, mit welchem der Prozess gestartet wurde
e Exit-Status des Prozesses

e User-ID

e CPU-Time im Userspace

e CPU-Time im Kernelspace

Testen Sie Ihr Modul indem Sie einen Zombie-Prozess erzeugen und anschlieend das Modul

zombie monitor laden.

Tip: Da der Linux-Kernel alle Prozesse in einer doppelt verketteten Liste (Task-List)
verwaltet, auf deren Kopf die Variable struct task struct init task zeigt
(definiert in signal.h), sollten Sie die Makros next task() oder
for each process () fir die Navigation durch die Task-List verwenden.
Beachten Sie, dass der letzte Eintrag der Task-List wieder auf den ersten Eintrag zeigt.

- Seite 3 -



